Skip to main content

Hitachi

Hitachi has developed the CMOS annealing machine, a non-Neumann architecture computer utilizing the structure of SRAM, a storage device, to perform optimization processing with the Ising model.

Solvers

ModelSolvers
Quadratic Unconstrained Binary Optimization (QUBO)hitachi.cmos_annealer

You can specify the type of machine type to run the process from the following options (see the Hitachi API Reference for more details) and HitachiParameterModel for details on how to set the type:

  • 3 : GPU 32bit(int)
  • 4 : GPU 32bit(float)
  • 5 : ASIC 4bit

QUBO

import strangeworks as sw

from strangeworks_optimization import StrangeworksOptimizer
from strangeworks_optimization_models.parameter_models import HitachiParameterModel
from dimod import BinaryQuadraticModel

sw.authenticate(api_key)

linear = {1: -2, 2: -2, 3: -3, 4: -3, 5: -2}
quadratic = {(1, 2): 2, (1, 3): 2, (2, 4): 2, (3, 4): 2, (3, 5): 2, (4, 5): 2}
model = BinaryQuadraticModel(linear, quadratic, "BINARY")

options = HitachiParameterModel(solver_type=5)

solver = 'hitachi.cmos_annealer'

so = StrangeworksOptimizer(
model=model,
options=options,
solver=solver
)

sw_job = so.run()
print(f"Job slug: {sw_job.slug}")
print(f"Job status: {so.status(sw_job.slug)}")
results = so.results(sw_job.slug)
print(results.solution)

Ising Model

The model parameter is an array of integer values [x0, y0, x1, y1, p] with 5 elements representing the vertices or interactions of the Ising model. The order in which they are specified does not affect the calculation results.

x and y represent the coordinates (x-axis, y-axis) on the Ising model, respectively, and p represents the coefficient. Set the Ising model in the form x0 == x1, y0 == y1 to represent the vertex = first order term (magnetic field), and set x0, y0 and x1, y1 to be adjacent to each other to represent the interaction of two vertices.

Adjacent means up-down, left-right, and diagonal. An error occurs if the coordinate specification of two non-adjacent vertices is included.

import strangeworks as sw

from strangeworks_optimization import StrangeworksOptimizer
from strangeworks_optimization_models.problem_models import HitachiModelList
from strangeworks_optimization_models.parameter_models import HitachiParameterModel

sw.authenticate(api_key)

model = HitachiModelList(
[
[0, 0, 0, 1, 117],
[0, 0, 1, 0, 104],
[0, 0, 1, 1, 65],
[0, 1, 1, 0, 72],
[0, 1, 1, 1, 45],
[1, 0, 1, 1, 40],
]
)

options = HitachiParameterModel(solver_type=5)

solver = 'hitachi.cmos_annealer'

so = StrangeworksOptimizer(
model=model,
options=options,
solver=solver
)

sw_job = so.run()
print(f"Job slug: {sw_job.slug}")
print(f"Job status: {so.status(sw_job.slug)}")
results = so.results(sw_job.slug)
print(results.solution)

Parameters

from strangeworks_optimization_models.parameter_models import HitachiParameterModel

options = HitachiParameterModel(
.....
)
KeyDescriptionData TypeDefault ValueMinimum ValueMaximum Value
typeExecution machine typeinteger3--
num_executionsAnnealing execution countinteger1110
parametersExecution parameter control settingobject---
temperature_num_stepsTemperature change step numberinteger101100
temperature_step_lengthLength per temperature stepinteger10011000
temperature_initialInitial temperaturenumber10.00 or more3.402823e+38
temperature_targetFinal temperaturenumber0.010 or more3.402823e+38
outputsControl of values included in responseobject---
energiesOutput energy valuebooleantrue--
spinsOutput spin value arraybooleantrue--
execution_timeOutput execution time (nsec)booleanfalse--
num_outputsNumber of outputs of spin value and energy valueinteger00num_executions
averaged_spinsOutput average value per site of spinbooleanfalse--
averaged_energyOutput the average value of energybooleanfalse--

Solvers

  • hitachi.cmos_annealer

Embedding

To use embedding with Hitachi solvers, pass the embedding_parameters parameter to the solver.

from strangeworks_optimization_models.parameter_models import HitachiParameterModel

options = HitachiParameterModel(embedding_parameters={
"chain_strength": 10,
"anneal_schedule": [[0, 0], [1, 1]],
"anneal_offsets": [0, 0],
"annealing_time": 1,
"auto_scale": True,
})
ParameterTypeDefaultDescription
max_no_improvementintNoneMaximum number of failed iterations to improve the current solution. Each iteration attempts to find an embedding for each variable such that it is adjacent to all its neighbours.
random_seedintNoneSeed for the random number generator. If set to None, the seed is initialized using os.random().
timeoutintNoneMaximum time (in seconds) before the algorithm gives up.
max_betafloatNoneQubits are assigned weight based on a formula (beta^n) where n is the number of chains containing that qubit. This value should be greater than 1. If None, max_beta is effectively infinite.
triesintNoneNumber of restart attempts before the algorithm stops. A typical restart takes between 1 and 60 seconds.
inner_roundsintNoneMaximum number of iterations between restart attempts. If None, inner_rounds is effectively infinite.
chainlength_patienceintNoneMaximum number of failed iterations to improve chain lengths in the current solution.
max_fillintNoneRestricts the number of chains that can simultaneously incorporate the same qubit during the search. Values above 63 are treated as 63. If None, max_fill is effectively infinite.
threadsintNoneMaximum number of threads to use. Parallelization is only advantageous where the expected degree of variables is significantly greater than the number of threads.
return_overlapboolNoneDetermines the function’s return value. If True, a 2-tuple is returned with the embedding and a boolean representing the embedding validity. If False, only an embedding is returned.
skip_initializationboolNoneSkips the initialization pass if the chains passed through initial_chains and fixed_chains are semi-valid.
verboseintNoneLevel of output verbosity. Ranges from 0 (quiet) to 4 (detailed debugging).
interactiveboolNoneIf True, the verbose output will be printed to stdout/stderr and keyboard interrupts will stop the embedding process, returning the current state to the user.
initial_chainsdictNoneInitial chains to be inserted into an embedding before fixed_chains are placed.
fixed_chainsdictNoneFixed chains that are inserted into an embedding before the initialization pass and do not change during the algorithm.
restrict_chainsdictNoneEnsures that each chain is a subset of restrict_chains throughout the algorithm.
suspend_chainsdictNoneA metafeature implemented in the Python interface. Each entry is an iterable of iterables representing the target node labels.

Solvers

  • DwaveSamplerParameterModel(embedding_parameters)
  • HitachiParameterModel(embedding_parameters)